Pose Normalization for Robust Face Recognition Based on Statistical Affine Transformation
نویسندگان
چکیده
A framework for pose-invariant face recognition using the pose alignment method is described in this paper. The main idea is to normalize the face view in depth to frontal view as the input of face recognition framework. Concretely, an inputted face image is first normalized using the irises information, and then the pose subspace algorithm is employed to perform the pose estimation. To well model the pose-invariant, the face region is divided into three rectangles with different mapping parameters in this pose alignment algorithm. So the affine transformation parameters associated with the different poses can be used to align the input pose image to frontal view. To evaluate this algorithm objectively, the views after the pose alignment are incorporated into the frontal face recognition system. Experimental results show that it has the better performance and it increases the recognition rate statistically by 17.75% under the pose that rotated within 30 degree.
منابع مشابه
Unconstrained Face Recognition From Blurred and Illumination with Pose Variant Face Image Using SVM
Face recognition has been an intensely researched field of computer vision for the past couple of decades. Motivated by the problem of remote face recognition, this paper has addressed the problem of recognizing blurred and poorly illuminated faces. This paper has shown that the set of all images obtained by blurring a given image is a convex set given by the convex hull of shifted versions of ...
متن کاملPose Normalization for Local Appearance-Based Face Recognition
We focused this work on handling variation in facial appearance caused by 3D head pose. A pose normalization approach based on fitting active appearance models (AAM) on a given face image was investigated. Profile faces with different rotation angles in depth were warped into shape-free frontal view faces. Face recognition experiments were carried out on the pose normalized facial images with a...
متن کاملFace Detection with methods based on color by using Artificial Neural Network
The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...
متن کاملRobust face recognition using 2D and 3D data: Pose and illumination compensation
The paper addresses the problem of face recognition under varying pose and illumination. Robustness to appearance variations is achieved not only by using a combination of a 2D color and a 3D image of the face, but mainly by using face geometry information to cope with pose and illumination variations that inhibit the performance of 2D face recognition. A face normalization approach is proposed...
متن کاملViewpoint Unconstrained Face Recognition Based on Affine Local Descriptors and Probabilistic Similarity
Face recognition under controlled settings, such as limited viewpoint and illumination change, can achieve good performance nowadays. However, real world application for face recognition is still challenging. In this paper, we propose using the combination of Affine Scale Invariant Feature Transform (SIFT) and Probabilistic Similarity for face recognition under a large viewpoint change. Affine ...
متن کامل